Model Predictive Control-based Energy Management Strategy for a Series Hybrid Electric Tracked Vehicle

Hong Wang, Yanjun Huang, Amir Khajepour, Qiang Song

Abstract—The series hybrid electric tracked bulldozer (HETB)'s fuel economy heavily depends on its energy management strategy. This paper presents a model predictive controller (MPC) to solve the energy management problem in an HETB for the first time. A real typical working condition of the HETB is utilized to develop the MPC. The results are compared to two other strategies: a rule-based strategy and a dynamic programming (DP) based one. The latter is a global optimization approach used as a benchmark. The effect of the MPC's parameters (e.g. length of prediction horizon) is also studied. The comparison results demonstrate that the proposed approach has approximately a 6% improvement in fuel economy over the rule-based one, and it can achieve over 98% of the fuel optimality of DP in typical working conditions. To show the advantage of the proposed MPC and its robustness under large disturbances, 40% white noise has been added to the typical working condition. Simulation results show that an 8% improvement in fuel economy is obtained by the proposed approach compared to the rule-based one.

I. INTRODUCTION

Construction vehicles, such as bulldozers, play a significant role in modern society. The increasing reliance on construction vehicles brings serious adverse impacts such as unsustainable energy use and poor air quality. Recently, hybrid electric construction vehicles have appeared. Caterpillar produced the first hybrid electric tracked bulldozer, D7E, in March 2008. Compared to traditional models, D7E's CO and NOx emissions were reduced by approximately 10 and 20 percent, respectively. The D7E model can improve fuel economy by 25%. In this paper, a new HETB composed of an engine-generator, two drive motors, and an ultracapacitor pack is put forward. The powertrain topology of the HETB is shown in Fig.1. This HETB uses an integrated controller to manipulate two separate motors on the two sides. The added electric motors and ultracapacitors provide more flexibility to meet power demands and achieve minimal fuel consumption [1]. The performance or fuel economy of the HETB is heavily dependent on its energy management strategy, which uses a supervisory controller that can coordinate the energy flow between different energy sources and enhance the overall efficiency of the powertrain [2].

Recently, numerous energy management strategies have been reported and applied to hybrid electric vehicles (HEVs) [3], [4], [5], [6], and these strategies can be divided into four classes [7]. The first type refers to the numerical optimization method, where the entire or partial drive cycle is required and the global or local optima is found numerically; this type includes the DP [8],[9],[10], MPC [11],[12] and stochastic DP [13]. DP provides a globally optimal solution and is mainly employed as a good benchmark for optimality comparison [14]. In the literature [6], authors firstly propose a novel correctional DP-based energy management strategy that takes characteristics of the drive cycle and hybrid powertrain into consideration to realize the significant improvement of fuel economy and at the same time to ensure drivability during slope conditions. The second class represents the analytical optimization method including Pontryagin's minimum principle and the Hamilton-Jacobi-Bellman equation [15]. The third type is the equivalent consumption minimization strategy (ECMS) [16], which decides the optimal power split ratio between different energy sources at each step [17],[18]. Furthermore, the ECMS method does not require future driving information as it solves an instantaneous optimization problem. Given a proper equivalent factor, ECMS could potentially achieve sub-optimal fuel economy [19]. Nevertheless, it is nontrivial to tune the equivalent factor, and ECMS cannot produce globally optimal performances. ECMS is able to adjust the factor via an adaptive ECMS as long as the future driving information can be identified online to achieve better fuel economy [20], [21]. The fourth category employs fuzzy logic, heuristic rules, and neural networks for energy management strategy design [22], [23].
The MPC is prevalent and widely employed in HEVs nowadays as an effective approach to deal with multivariable constrained control problems, and this strategy can be treated as a tradeoff between DP and ECMS. Currently, different kinds of MPCs are widely utilized because of their ability to deal with multivariable constrained problems and their potential for the real-time application as a receding horizon control strategy. Meanwhile, the MPC has also shown its potential for application in HEVs [24], [25], [26], [27], [28]. An MPC solves an energy management problem at every time instant by quadratic programming [29], nonlinear programming [30], Pontryagin’s minimum principle [31], and stochastic DP [32]. In [33], a stochastic MPC was designed for a series HEV, where a Markov chain was used to model the future power demand. Its performance was compared to that of a prescient MPC with a fully known power demand and a frozen-time MPC using a constant power demand in the prediction horizon to demonstrate its fuel economy in a condition similar to the ideal condition (prescient MPC).

TABLE I

<table>
<thead>
<tr>
<th>Component</th>
<th>Parameters</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diesel Engine</td>
<td>maximum power</td>
<td>172kW/1800rpm</td>
</tr>
<tr>
<td></td>
<td>maximum torque</td>
<td>1087Nm/1300rpm</td>
</tr>
<tr>
<td>Motor</td>
<td>maximum power</td>
<td>105kW</td>
</tr>
<tr>
<td></td>
<td>rated power</td>
<td>75kW</td>
</tr>
<tr>
<td></td>
<td>maximum torque</td>
<td>800Nm</td>
</tr>
<tr>
<td></td>
<td>rated torque</td>
<td>500Nm</td>
</tr>
<tr>
<td></td>
<td>maximum speed</td>
<td>6000rpm</td>
</tr>
<tr>
<td></td>
<td>rated speed</td>
<td>1430rpm</td>
</tr>
<tr>
<td>Generator</td>
<td>maximum power</td>
<td>180kW</td>
</tr>
<tr>
<td></td>
<td>rated power</td>
<td>175kW</td>
</tr>
<tr>
<td></td>
<td>maximum torque</td>
<td>1010Nm</td>
</tr>
<tr>
<td></td>
<td>rated torque</td>
<td>980Nm</td>
</tr>
<tr>
<td></td>
<td>maximum speed</td>
<td>2200rpm</td>
</tr>
<tr>
<td></td>
<td>rated speed</td>
<td>1700rpm</td>
</tr>
<tr>
<td>Ultracapitor</td>
<td>capacity</td>
<td>2.4F</td>
</tr>
<tr>
<td></td>
<td>voltage</td>
<td>600V</td>
</tr>
<tr>
<td>Vehicle</td>
<td>curb weight</td>
<td>28000kg</td>
</tr>
<tr>
<td></td>
<td>track width</td>
<td>0.61m</td>
</tr>
<tr>
<td></td>
<td>track length</td>
<td>3.05m</td>
</tr>
<tr>
<td></td>
<td>drive wheel radius</td>
<td>0.46831m</td>
</tr>
</tbody>
</table>
Literature [34] developed an MPC for energy management with the capability to account for the uncertainty caused by traffic, destination, and weather. A modified k-nearest neighbor regressor was utilized to generate weighted samples of the upcoming drive cycle by feature matching the current state to historical states, and subsequently, an MPC was developed based on the obtained information.

In this paper, the MPC method is used to arrive at an effective energy management system for HETBs. HETBs are mainly different from road electric hybrid vehicles in working and driving conditions. Unlike HEVs, HETBs’ power demands change dramatically between the soil-cutting stage and the no-load stage under a specific drive cycle. Consequently, the application of MPC strategy in HETBs is more complicated than that in HEVs. Besides, the drive cycle changes sharply according to the ground characteristic. Thus, the robustness of the HETB is more important than that of an HEV.

Three scenarios are utilized to develop the energy management controller using the MPC. The first scenario is extracted from typical working conditions of the bulldozer. The optimal solution over a typical drive cycle is obtained by achieving the maximal fuel economy and then comparing this to the results from using rule-based and DP strategies. The effect of the MPC parameters (e.g., length of prediction horizon) is also investigated. The comparison indicates that the proposed approach is robust to drive cycle disturbances and provide much better fuel economy over rule-based strategies. It is also indicated that the proposed MPC power management can achieve over 98% of the fuel optimality of DP without any knowledge of the changes in drive and working conditions.

The paper is organized as follows: In Section II, the HETB model is provided; the MPC is developed in Section III; the other two power management strategies are provided in the next section; the simulation results under three scenarios are compared to the rule-based strategy and the optimal solution calculated by DP in Section V; finally, comments and future work are discussed.

II. SERIES HETB POWERTRAIN MODEL

A. System Configuration

The vehicle studied is an SD-24 tracked bulldozer from Shantui Construction Machinery Co., Ltd. and its powertrain configuration can be seen from Fig.1. The hybrid system includes a diesel engine (175kW), an ultracapacitor pack, a permanent magnet generator (175/180 kW), two motor drive systems (75/105 kW), and two tracks. A 2.44F ultracapacitor pack is utilized as an energy storage system. The integrated controller is developed and used to coordinate the power flow of the entire powertrain. Specifications of this bulldozer are given in Table I.

The HETB is modeled in SIMULINK, as shown in Fig.2. For more information regarding this model, please refer to [35].

B. The Vehicle Model

Differing from road vehicles, the bulldozer’s major external forces that are exerted on the two tracks along the heading direction include the external travel resistance F_E and the operating resistance F_T. The aerodynamic drag and the acceleration resistance are neglected since the bulldozer has a low velocity [36], [37].

The external travel resistance F_E is caused by the vertical deformation of the soil under the anterior track of the bulldozer when driving. It mainly results from the energy consumption of soil compaction and the effects of buldozing resistance can be shown as [38]:

$$F_E = F_c + F_b$$

$$F_c = \frac{2b}{(n+1)k} \left(\frac{G}{2bL} \right)^{n+1}$$

$$F_b = yZ^2bK_c + 2bZcK_{pc}$$

where,

$$Z = \left(\frac{G}{2bL} \right)^{\frac{1}{2}}$$

$$K_c = \left(\frac{2N_c}{\tan \psi} + 1 \right) \cos^2 \psi$$

$$K_{pc} = (N_c - \tan \psi) \cos^2 \psi$$

The operating resistance F_T is shown as the following:

$$F_T = F_1 + F_2 + F_3 + F_4$$

$$F_1 = 10^4 B_t h_y k_y$$

$$F_2 = V \mu_1 \cos \theta$$

$$F_3 = 10^6 B_t X_\mu k_y$$

$$F_4 = G \mu_2 \cos^2 \delta \cos \theta$$

$$Vol = \frac{B_t (H - h_y)^2 k_m}{2 \tan \alpha_o}$$

By combining (1) ~ (12), the vehicle’s power requirements for the powertrain, P_{req}, can be formulated as:

$$P_{req} = (F_E + F_T)V$$

where V is the bulldozer’s speed along the longitudinal direction.
C. The Engine Model

The experimental approach is adopted to model the engine, and the engine’s dynamic characteristics are neglected. The engine fuel consumption is represented by a function of the mechanical power and crankshaft speed, both of which were identified from experimental data as shown in Fig. 3.

Assuming that engine is able to operate at the fixed speed, the fuel consumption $B_e (g/l s)$ is a function with respect to the mechanical power, P_e:

$$B_e = B_e (P_e)$$ \hspace{1cm} (14)

The engine is constrained to operate within its limits:

$$N_e, _{min}(t) \leq N_e(t) \leq N_e, _{max}(t);$$

$$P_e, _{min}(t) \leq P_e(t) \leq P_e, _{max}(t);$$

$$T_e, _{min}(t) \leq T_e(t) \leq T_e, _{max}(t);$$

where $N_e, _{min}(t)$ and $N_e, _{max}(t)$ represent the lower and upper limit of engine speed at time t, respectively; $P_e, _{min}(t)$ and $P_e, _{max}(t)$ are the limits of the output power, respectively; whereas, $T_e, _{min}(t)$ and $T_e, _{max}(t)$ are the minimum and maximum engine torque at time t, respectively.

D. The Generator and Motor Models

The generator and motor efficiency characteristics are represented by a non-linear 3-D Map with respect to torque and speed using experimental data. The generator efficiency map is provided in Fig.4, and the motor efficiency map is indicated in Fig.5. The motor efficiency η_m at the operation point (n_m, T_m) is calculated according to the following correlation:

$$\eta_m(n_m, T_m) = f(n_m, T_m)$$ \hspace{1cm} (16)

E. The Ultracapacitor Model

The ultracapacitor pack is composed of several units in both parallel and series modes. Each unit can be modeled as a resistor in series with a capacitance. The resistance models the electrolyte losses, whereas, the capacitance calculates ion accumulation. The model of the entire ultracapacitor pack can be denoted by:

$$P_{uc}(t) = V_e(t) I_{uc}(t)$$ \hspace{1cm} (17)

$$V_{uc}(t) = - \frac{1}{C} I_{uc}(t)$$ \hspace{1cm} (18)

$$SOE(t) = \frac{Q(t)}{Q_{max}} = \frac{CV_{uc}(t)}{CV_{max}} = \frac{V_{uc}(t)}{V_{max}}$$ \hspace{1cm} (19)

$$SOE(t) = \frac{E(t)}{E_{uc}} = \frac{1}{2} CV_{uc}(t)^2 = \frac{V_{uc}(t)^2}{V_{max}^2} = SOC(t)^2$$ \hspace{1cm} (20)

where V_e is the terminal voltage; V_{uc} is the voltage across the equivalent capacitance; V_{max} is the ultracapacitor’s maximum voltage; I_{uc} is the current; Q_{max} is the maximum acceptable amount of capacity; $Q(t)$ is the amount of charge stored in the capacitance; E_{uc} is maximum energy capacity; and $E(t)$ represents the amount of energy stored in the capacitance.

The relationship among the differential of SOE, the maximum energy capacity, and the ultracapacitor power is shown in (21). Since the problem is modeled by the power balance equations, choosing the SOE as the control variable for the HETB is more natural. The dynamic equation of the SOE variation is shown as:

$$SOE(t) = \left\lfloor \frac{1}{\eta_{uc}} \frac{P_{uc}(t)}{E_{uc}} \right\rfloor$$ \hspace{1cm} (21)

$$\text{if } P_{uc}(t) \geq 0 \quad (\text{discharge})$$

$$= \left\lfloor -\eta_{uc} \frac{P_{uc}(t)}{E_{uc}} \right\rfloor$$ \hspace{1cm} (21)

$$\text{if } P_{uc}(t) < 0 \quad (\text{charge})$$

where η_{uc} is the ultracapacitor’s efficiency.

The power balance model for the electrical summation node is shown in Fig.6, where the relationship among the power from the genset, the electric motor, and the ultracapacitor is described as:

$$P_{uc} = P_{gen} + P_{req}$$ \hspace{1cm} (22)
where P_{req} is the power requirements from the powertrain; $P_{\text{gen},e}$ denotes the electric power from the genset; and η is the generator efficiency.

From (22), the following constraints on P_{uc} are derived:

$$ P_{\text{req}}(t) - P_{\text{gen},e,\max} \leq P_{\text{uc}}(t) \leq P_{\text{req}}(t) - P_{\text{gen},e,\min} $$

(24)

Furthermore, P_{uc} and the SOE must be satisfied together with the physical constraints:

$$ P_{\text{uc,min}}(t) \leq P_{\text{uc}}(t) \leq P_{\text{uc,max}}(t) $$

(25)

$$ SOE_{\text{min}} \leq SOE(t) \leq SOE_{\text{max}} $$

(26)

where $P_{\text{gen},e,\max}$ represents the maximum electric power from the genset; $P_{\text{gen},e,\min}$ refers to the minimum power; $P_{\text{uc,max}}$ is the maximum output power of ultracapacitor; $P_{\text{uc,min}}$ is the minimum output power; SOE_{max} denotes the maximum state of energy; and SOE_{min} is the minimum state of energy.

As an optimal control method, the MPC provides enough effort involved are imposed by enforcing (24) and (25) at each time step. The state penalty Q and the input penalty R are:

$$ Q = \begin{bmatrix} 10 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad R = 10 $$

The cost function to be minimized can be described by:

$$ \min_J \begin{bmatrix} \tau_{t_{\text{ref}}} \\ \tau_{t_{\text{ref}}} \end{bmatrix} = \min_{\tau_{t_{\text{ref}}}} \sum_{i=1}^{\tau_{t_{\text{ref}}}} \left[y(k+i+1)-y_{\text{ref}}(k+i+1) \right]^T Q \left[y(k+i+1)-y_{\text{ref}}(k+i+1) \right] $$

(30)

subject to:

$$ y_{\text{ref}}(k+i) \leq y(k+i) \leq y_{\text{ref}}(k+i) $$

(31)

The convex quadratic objective function only with respect to the input will be obtained by inserting (31) into the original objective function shown in (30) and neglecting the constant term:

$$ J(x_0, u_0) = \frac{1}{2} U^T H \bar{U} + F^T \bar{U} $$

(32)
where the Hessian matrix H is symmetric and positive or semi-positive definite and F is the gradient vector. \tilde{Q}, \tilde{R} and Y_{uc} should be reformulated according to the prediction horizon length N based on Q, R, and Y_{ref}. The updated constraints of the increment of the control can be found by the reformulation of (32) and the constraints shown in (30).

For example, the constraints of the states can be applied to \bar{U} as $\bar{U}(x)$. The energy management problem is solved by an open source solver, qpOASES [41]. The optimal control input sequence u_0, u_1, u_2 ... u_{N-1} is obtained from the solver qpOASES, and the first element of this trajectory u_0 is applied to the plant model of the HETB. The updated value of the state is obtained in the subsequent step. The receding control strategy is implemented by repeating this procedure during subsequent time steps. The explicit expression of the quadratic programming is not reported here for the sake of brevity.

IV. RULE-BASED AND DP-BASED ENERGY MANAGEMENT STRATEGIES

In this paper, three energy management strategies have been designed in order to study the potential fuel economy of an HETB: rule-based strategy, DP, and MPC.

A. The Rule-based strategy

Utilizing a set of rules is the most popular and easiest method of implementing supervisory control in an HEV and deciding on the power split ratio between the engine and the other energy storage system [42]. The parameters of a rule-based controller are usually obtained from the powertrain modeling and simulation, possibly by using optimization techniques. In this study, the rule-based approach is implemented as follows: the engine output power follows the power demand of the bulldozer, and the ultracapacitor acts as the auxiliary power source to supply power for the power shortage caused by the excessive load of the power demand. The SOC of the ultracapacitor and load power requirement determines the working point of the engine-generator, as shown in Table II.

In this table, P_{max} represents the engine’s maximum power; P^* refers to the target demand power; P_{dc} represents the DC bus demand electric power; P_{uc} is the ultracapacitor power; and SOC_{max} and SOC_{min} are the ultracapacitor maximum and minimum state of charge, respectively.

B. Dynamic programming

Differing from the rule-based strategy, the DP algorithm usually depends on a model to provide a provably optimal control strategy by searching all state and control grids exhaustively [43, 44]. However, the DP-based approach is not suitable for real-time application since the exact future driving information is seldom known in the real world [45]. Nonetheless, the DP-based strategy can provide a good benchmark for evaluating the optimality of other algorithms, which helps in ultimately perfecting real-time strategies [46, 47, 48].

The problem setup for the DP-based strategy requires discrete values of the control variable and a discrete-time description of the system. The procedure of DP is implemented as follows [6].

1) **Problem Formulation**

The state and the control variables need to be determined in order to formulate the DP. As mentioned, the state is the SOE. The control input refers to the output power of the ultracapacitor. The discrete-time model of the HETB can be expressed as:

$$x(k+1) = f(x(k), u(k))$$

In the above equation, $u(k)$ and $x(k)$ are the control inputs and the state variables, respectively. The sampling time is chosen as 1 second.

The purpose of this optimization problem is to obtain the optimal control sequence, $u(k)$, and minimize the fuel consumption over a given drive cycle. The cost function of this optimization problem is described as follows:

$$J = \sum L(x(k), u(k))$$

where, L means the instantaneous cost value and M is the time length of the specific drive cycle.

The physical constraints of state and control variables are denoted by the following inequalities to guarantee smooth/safe operation of the key components, including the engine, motor, and ultracapacitor:

$$SOC_{\text{min}} \leq SOC \leq SOC_{\text{max}};$$

$$SOE_{\text{min}} \leq SOE \leq SOE_{\text{max}};$$

$$N_{\text{rev}} \leq N \leq N_{\text{rev}};$$

$$P_{\text{max}} \leq P \leq P_{\text{max}};$$

$$T_{\text{max}} \leq T \leq T_{\text{max}}.$$

Furthermore, the equality constraints are used such that the HETB can satisfy load and speed requirements at all times.

2) **Implementing Dynamic Programming**

The main merit of DP is that it is able to deal with the
nonlinear problem and constraints while obtaining the optimal policy. The DP problem can be described by (36) and (37):

1. **Step M-1:**
 \[J^*_{M-1}(x(M-1)) = \min_{u(M-1)} \left[L(x(M-1), u(M-1)) \right] \tag{36} \]

2. **Step k, for 0 \leq k < M-1:**
 \[J^*_{k}(x(k)) = \min_{u(k)} \left[L(x(k), u(k)) + J^*_{k+1}(x(k+1)) \right] \tag{37} \]

where \(J^*_{k}(x(k)) \) refers to the optimal accumulated cost from time step \(t_k \) to the terminal; whereas, \(x(k+1) \) means the state at the \((k+1)\)th stage when the control variable \(u_k \) is applied at the time step \(t_k \) according to (29).

The optimal control policy is obtained by solving the above recursive equation backwards. The minimizations are conducted subject to the equality constraints imposed by the drive cycle and the inequality constraints shown in (35).

V. CASE STUDY

In this section, the results obtained by the aforementioned three energy management strategies are compared and discussed in three scenarios.

A. Scenario 1: Typical working condition

In this scenario, a typical working condition is used for the simulation to investigate the effect of the prediction horizon length. In Fig. 7, Velocity (km/h) is the bulldozer velocity and the depth (m) is soil-cut depth. The working stages are described as follows: 1-4-s is the traveling stage; 4-16-s is the soil-cutting stage; 16-31-s is the soil-transportation stage; 31-33-s is the unloading soil stage, and 33-50-s is the no-load stage. Fig.8 shows the power demand calculated according to the typical working condition by the equations described in Section II.

![Fig.7 Typical working condition of HETB](image)

![Fig.8 Power demand of the typical working condition](image)

The most important MPC parameter that affects the solution is the length of the prediction horizon, \(N \), which can be 2s, 4s, or 15s. Fig.9 shows the SOE profile corresponding to the different lengths of prediction horizons and the optimal solution obtained from the DP algorithm. It can be observed that as the prediction horizon increases, the MPC draws closer to the optimal solution. The improvement in fuel economy is provided in Table III. To compensate for the discrepancy between the initial SOE and final SOE, the correction method proposed in [13] is used such that the comparison can be performed. As seen from Table III, the fuel consumption also decreases with an increase of the receding horizon. Finally, a prediction horizon of 15s will be chosen and used in the MPC development in the following two scenarios.

![Fig.9 SOE profile with different length of prediction horizon](image)

TABLE III

<table>
<thead>
<tr>
<th>Control Strategy</th>
<th>Fuel Consumption (g)</th>
<th>Fuel Economy (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DP</td>
<td>290</td>
<td>100</td>
</tr>
<tr>
<td>Rule-based</td>
<td>313</td>
<td>92.6</td>
</tr>
<tr>
<td>MPC</td>
<td>N=2</td>
<td>295.4</td>
</tr>
<tr>
<td></td>
<td>N=4</td>
<td>294.6</td>
</tr>
<tr>
<td></td>
<td>N=15</td>
<td>294</td>
</tr>
</tbody>
</table>
B. Scenario 2: The Working Condition under Disturbances

In order to verify the robustness of the proposed MPC strategy, a disturbance of 40% is added to the typical working condition as shown in Fig.11.

The results of the system SOE, ultracapacitor’s current, engine power, and input P_{in} are presented in Fig.12. Fig. 13 shows the comparison of the SOE between the MPC and the DP under Scenario 2. The fuel consumption of the three energy management strategies is shown in Table IV. The MPC algorithm can achieve 98.9% fuel optimality with respect to the DP benchmark under scenario 2; whereas, the rule-based power management can only achieve 91%. The MPC strategy can obtain an additional 8% fuel economy improvement over that of the rule-based strategy. We can conclude that the MPC strategy is more effective when the working condition is not fully known.

C. Scenario 3: The Combined Working Condition

Although the working condition is preset, there would be uncertainties or disturbances in real applications where the real working condition would distribute around the typical, preset working condition. Therefore, a combined working condition with a 40% disturbance is used to evaluate the MPC’s robustness, as shown in Fig.14. The same MPC power management strategy is used for the disturbed combined working conditions.

<table>
<thead>
<tr>
<th>Control Strategy</th>
<th>Fuel Consumption (g)</th>
<th>Fuel Economy (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DP</td>
<td>304.7</td>
<td>100</td>
</tr>
<tr>
<td>Rule-based</td>
<td>334.8</td>
<td>91</td>
</tr>
<tr>
<td>MPC</td>
<td>308</td>
<td>98.9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Control Strategy</th>
<th>Fuel Consumption (g)</th>
<th>Fuel Economy (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DP</td>
<td>2595.5</td>
<td>100</td>
</tr>
<tr>
<td>Rule-based</td>
<td>2583.6</td>
<td>87.5</td>
</tr>
<tr>
<td>MPC</td>
<td>2376.9</td>
<td>95</td>
</tr>
</tbody>
</table>
The results of the system SOE, ultracapacitor’s current, engine power, and input P_{in} are presented in Fig.15. Fig. 16 shows the comparison of the SOE between the MPC and the DP under scenario 3. The fuel consumption comparison is shown in Table V. The DP-based control strategy with the actual working condition is used to evaluate the MPC and rule-based performances in the presence of drive cycle disturbances. It can be seen from Table V that the MPC algorithm can achieve 95% fuel optimality with respect to the DP benchmark under scenario 3 while the rule-based power management can only achieve 87.5%. An additional 8% fuel economy improvement is obtained from the MPC algorithm over that of the rule-based strategy.

The conclusion can be drawn that even under disturbed conditions, the MPC can work very well in spite of using the typical working condition for its prediction. One simulation step has the calculation time of mere milliseconds, so this proposed MPC can be used in real time. All results demonstrate that the proposed MPC is robust and applicable.

VI. CONCLUSION

The application of the model predictive energy management strategy of a series HETB was presented in this study. In order to develop the MPC strategy, the structure and modeling of the HETB were discussed, and the effect of the most important MPC parameters was investigated after implementation of the proposed strategy. This paper also presented a comparative study between the MPC and two other strategies: 1) rule-based control strategy; 2) DP algorithm for minimizing fuel consumption. The structure and modeling of the HETB were developed first. Using this model, the formulations of three energy management strategies were presented. Simulation results showed that under the typical working condition, the fuel economy achieved with the MPC is 6% better than that achieved by the rule-based algorithm. The proposed MPC power management also demonstrated that it can achieve 98% fuel optimality with respect to the DP benchmark in the typical working condition.

In order to verify the advantage of the MPC strategy under large disturbances, a 40% white noise was added to the typical working condition. Simulation results demonstrated that the MPC strategy can obtain an additional 8% fuel economy improvement over that of the rule-based strategy under disturbed scenarios. This shows the robustness of the proposed energy management for large disturbances.

Further simulation and experimental investigations are underway to test and verify these quantitative results. Future work will focus on real-world cases to evaluate the proposed power management strategy and to make it more robust under all working and driving conditions.

REFERENCES

